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On the numerical inversion of the Laplace transform and 
similar Fredholm integral equations of the first kind 

J G McWhirter and E R Pike 
The Royal Signals and Radar Establishment, St Andrews Road, Great Malvern, Worcs 
WR14 3PS. UK 

Received 27 February 1978 

Abstract. Analytic expressions are derived for the eigenfunctions and eigenvalues of the 
Laplace transform and similar dilationally invariant integral equations of the first kind. 
Some generalised concepts of information theory are introduced to show how the use of 
these eigenfunctions enables the maximum possible amount of information to be obtained 
when solving the inverse problem numerically. These concepts also explain how the 
amount of information available depends on the level of noise in the calculation and on the 
structure of the particular integral kernel. Some numerical examples which illustrate these 
points are presented. 

1. Introduction 

In this paper we study the problem of obtaining the numerical solution of integral 
equations of the type 

where the kernel K depends only on the product of U and T and has the property that 

], . IK(x)lx-”2 dx 

are also finite. 
This general class of equation includes the Laplace transform, the Fourier sine and 

cosine transforms and many other integral equations of importance in physics. Such 
equations often arise in the context of physical experiments where the function p ( u )  
about which information is required is related to the measured quantity g(T) by means 
of a Mellin convolution with the instrumental function K.  A particular example which 
occurs in laser anemometry will be discussed in detail in a separate publication in 
which experimental factors such as sampled data and truncation are considered. The 
purpose of the present paper is to study the problem quite generally, to gain a clear 
insight to the difficulties involved and to develop the mathematical formulae needed 
to tackle such problems. 

Equation (1.1) has the form of a Fredholm integral equation of the first kind and it 
is well known that the problem of solving such equations is basically ill-conditioned. 
Many physicists have discovered, after much wasted effort, that it is essential to 
understand this feature before attempting to compute solutions. 
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1730 J G Mc Whirter and E R Pike 

In 9 2 we discuss the ill-conditioning and fundamental difficulties associated with 
it. Then, by means of an example from classical optics, we show how it may be 
understood physically in terms of limited information capacity and introduce the 
concept of a generalised Shannon number. In this context we review, briefly, the 
established regularisation techniques of smoothing and truncation which are often 
used to avoid the inherent difficulties. In 9 3 we derive analytic expressions for the 
eigenfunctions and eigenvalues of integral equations in the class described by equation 
(1.1). The eigenfunctions are shown to be mutually orthogonal and complete and in 
0 4 they are used to derive a formal solution to the integral equation. The solution is, 
of course, inherently ill-conditioned. However, when it is derived in terms of eigen- 
functions it is easy to apply the information theory discussed in 9 2 and extract the 
maximum amount of available information from the equation. 

In 9 4 the analytic expression for the eigenvalues is used to study the concept of 
channel capacity in the context of equation (1.1). In this way it is possible to describe 
how the amount of information which can be obtained from a given equation depends 
on the kernel and it is easy to show for example, that a Fourier transform contains 
more information than the equivalent Laplace transform-a fact which is clearly 
reflected in the comparative ease with which it can be inverted. 

Finally, in Q 5 ,  we include some specific numerical examples related to the solution 
of equation (1.1). These serve to illustrate the points discussed previously and 
demonstrate clearly the need to consider information content in order to avoid 
obtaining meaningless results. In particular the theory is used to tackle the Laplace 
transform inversion in a well-conditioned manner. This difficult numerical problem, 
which is frequently encountered by physicists and engineers, is still the subject of 
much attention in the literature. 

2. IU-conditioning and information theory 

The general Fredholm integral equation of the first kind takes the form 

The problem of solving such equations has been studied by many authors (e.g. Phillips 
1962, Tikonov 1963, Baker er a1 1964) and a useful review is given by Miller (1974). 
Their ill-conditioned nature may be illustrated in a rather simple manner as follows. 

In equation (2.1) the addition to 4(y) of an oscillatory function such as 

s4, (Y 1 = s inby  1 (2.2) 
causes a change in the function h ( x )  given by 

b 

Sh,(x) = J ~ ( x ,  y )  sin(wy) dy. 
a 

(2.3) 

Now for any integrable kernel 
r b  

and so it is possible to make Sh, arbitrarily small by choosing a sufficiently large value 
of w. Therefore, since any numerical calculation must be subject to some error, 
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however small, there will be values of w for which it is not possible to distinguish the 
appropriate change ah, when computing the solution to equation (2.1) and any 
attempt to determine the corresponding component &, (y ) in the solution will lead to 
entirely arbitrary results. In such circumstances it is not possible to obtain a complete 
and unique result. In view of the form of equation (2.1) it is convenient to restrict our 
discussion to equations having a non-degenerate, symmetric kernel. 

The following specific example (figure 1) from classical optics and communication 
theory has this form and serves to illustrate further the problem of ill-conditioning by 
indicating the fundamental cause and showing how it may be understood physically. 

Resolution limit r/Q 

Fi- 1. Optical analogy. 

Light from a one-dimensional space-limited object described by the function 
O(x)(lxl<X/2) passes through a lens L of finite aperture to form a band-limited 
object I ( x ’ )  which is given by the equation 

x/2 

272 I” -” I-,, eioxO(x) dx (2.5) dw e-iox’ 
I ( X ’ )  = - 

i.e. 

x’z sin[R(x - x ’ ) ]  
I ( x ’ )  = j O(x) dx 

-x/z dx-x’) 
where R is the highest spatial frequency transmitted by the lens. In principle, given 
any image function I ( x ’ )  it is possible to determine mathematically the exact object 
O(x) from which it was obtained. However it is well known physically that a lens with 
finite spatial frequency bandwidth R has an associated resolution limit ?r/R and so the 
image formed by an object of spatial extent X can contain only a finite number 
S = XR/v of independent components or degrees of freedom, S being the Shannon 
number of information theory. The apparent contradiction between these two points 
of view is easily resolved when the mathematical solution is derived in the following 
manner (di Francia 1969). Since the kernel in equation (2.6) is symmetric in x and x’ 
it follows from Hilbert-Schmidt theory that the eigenfunctions 4,, ( x ’ )  which satisfy the 
equation 

(2.7) 

form a complete orthonormal basis over [-X/2, X/2] (see, e.g., Courant and Hilbert 
1953) and that the eigenvalues An are real. It is possible, therefore, to expand the 
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image function I(x’) in terms of these eigenfunctions: 
CO 

I(x’)= C bn&(X’) 
n = O  

where 
x/2 

bn = I(x’Mn(x’) dx’. 

O(x) may also be expanded in this way: 
m 

O(X)= C an+n(x) 
n = O  

where 
x/2 

an = I,, O(x)4n(x)dx 

and by substituting this expression into equation (2.6) it is easy to show that 

(2.10) 

(2.11) 

bn = Anan. (2.12) 

Equation (2.10) may therefore be written in the form 

(2.13) b n  

n = O  A n  
O(X)=  C -4n(X) 

which expresses the object function O(x) in terms of the image function I(x‘). This 
expansion expresses the complete mathematical solution to equation (2.6) but in 
practice it is impossible to evaluate entirely, due to the behaviour of the eigenvalues A n  
which appear in the denominators. Slepian and Pollack (1961) showed that the 
eigenfunctions of equation (2.6) are the prolate spheroidal functions and that the 
eigenvalues are essentially unity for values of n up to X R / T  but fall off to zero 
extremely rapidly as n is increased further. Figure 2 illustrates this behaviour for 
X R / T  = 11.5. The extremely sharp cut-off means that those terms of equation (2.13) 
for which n > X R / T  must be divided by an extremely small number and so noise or 
error on the value of an will cause these terms to diverge dramatically. Such 
components, in effect, cannot be determined and must be omitted from the result if it 

n 

Figure 2. Eigenvalues A n  of equation (2.7) as a function.of n. 
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is not to be completely corrupted. In practice only X f l / l r  terms of the expansion in 
equation (2.13) can be calculated and so the calculation is limited to the same number 
of degrees of freedom (the Shannon number) as one finds physically due to the finite 
resolution limit of the lens. 

It is clear from the above example that the eigenvalue structure associated with 
problems of this kind is of fundamental importance. The eigenfunctions may be 
regarded as basic elements of information which retain their identity under the action 
of the integral operator 

(2.14) 

but are scaled in magnitude by the eigenvalue A,,. The larger A,, the more efficient is 
the transmission of the corresponding information element through the integral. 
Elements for which A,, is sufficiently small are transmitted so weakly that they become 
lost in noise. 

In general the behaviour of A,, with n will not be as dramatic as that found by 
Slepian and Pollack but it is always possible to order the eigenfunctions and eigen- 
values so that A,, 3 A, for n < m and then the best conditioned approach towards the 
solution is to evaluate the lowest-order components first and progressively add as 
many higher-order terms as possible. Unless A,, is asymptotically constant (a very 
special situation pertaining to the Fourier transforms as shown in 0 4) the calculations 
will eventually become noise limited and so the series must be terminated. The 
number of terms which can be included in the series may be regarded as a generalised 
Shannon number which obviously depends on the size of the errors which occur in the 
calculations and measurements. It also depends on the actual kernel according to its 
eigenvalue structure. The faster A,, decays to any given noise level the less informa- 
tion can be extracted from the equation. Each integral operator may be thought to 
have a finite channel capacity which is related to the width of its eigenvalue ‘spec- 
trum’. 

It is important to realise that in such circumstances one can never obtain the 
solution to equation (2.1). An infinite amount of information is not available and the 
solution must be written in the form 

N m 

(2.15) 

where the 8, are unknown parameters. If the kernel describes a physical experiment 
then the corresponding information cannot be obtained unless the experiment is 
suitably changed. In the optics example it is not possible to achieve higher resolution 
without using a larger aperture lens. On the other hand, there may be situations in 
which the information available is sufficient for a particular experiment. For example, 
if it is known that an object under investigation contains no very fine detail then the 
image formed by a lens with the appropriate resolution limit can contain all the 
information necessary to specify the object completely. In this case it is known, a 
priori, that the coefficients of all terms in equation (2.13) for which n > X f l / l r  must be 
zero. More generally, there must be sufficient information to specify the parameters 
of a suitable physical model for the solution from which the missing components may 
then be determined. A complete solution can only be obtained when some sort of 
model is employed. 
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Current mathematical literature on the numerical solution of Fredholm integral 
equations of the first kind contains two main methods of regularisation to avoid the 
problems of ill-conditioning. The first, which was considered by Tikonov (1963) and 
by Baker et a1 (1964), involves the use of an eigenfunction expansion as described 
above. The higher-order terms which cannot be evaluated are assumed to be zero and 
so the series is simply truncated. In effect the assumption that higher-order terms can 
be ignored is a simple form of model based on the fact that one is usually concerned 
with fairly smooth solutions which can be represented quite accurately in terms of 
lower-order eigenfunctions. The second method, which was introduced by Phillips 
(1962), involves the use of smoothing constraints to weight against highly oscillatory 
components which might otherwise appear with arbitrarily large magnitude in the 
solution. This approach is also based on an assumption that the solution is fairly 
smooth and can be modelled adequately using only slowly varying components. 

The two methods clearly have much in common and Miller (1974) shows that the 
smoothing technique is, in fact, equivalent to the eigenfunction approach. The series 
is not truncated sharply but the higher-order components are progressively weighted 
out. Lewis (1975) compares the two methods at some length and treats some specific 
examples. Whichever approach is taken it is necessary to choose a value for the 
relevant regularisation parameter-the number N of eigenfunctions which may be 
used, or the smoothing parameter a-and in general this can only be decided by trial 
and error against some criterion of expected results. 

In view of the discussion earlier in this section and the information concepts 
introduced, the expansion in terms of eigenfunctions can be seen to have fundamental 
advantages over other approaches. Those components of the solution which can be 
determined in practice are optimally compacted into the lower-order terms and may 
be evaluated without any influence from the weaker ones. Moreover the transition to 
noise will be as sharp as possible under these conditions-an important factor in 
choosing the regularisation parameter. In order to implement this approach it is 
necessary to obtain the eigenfunctions and eigenvalues of the particular integral 
equation under consideration. However, the numerical evaluation of these functions 
presents, in itself, a problem of noise and information similar to that associated with 
the original inversion. Indeed there are situations in which conventional matrix 
methods may prove quite futile for this purpose. For example, the eigenfunctions of 
equation (1.1) (derived in 8 3) have zero-crossings which are exponentially spaced and 
so they cannot be represented effectively in terms of uniformly sampled values. 
Clearly it is of the utmost value to have available analytic expressions for the appro- 
priate eigenfunctions and eigenvalues. 

3. Derivation of eigenfunctions and eigenvalues 

This section is devoted to deriving expressions for the eigenfunctions &,(U) and 
eigenvalues A, which satisfy 

Jo (3.1) 

in order that the theory discussed in 0 2 may be applied to equations in the class 
described by equation (1.1). 
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Consider the function 

where A, B and s are complex numbers. Substituting q5'(u) into equation (1.1) leads 
to a function of the form 

which exists and is finite provided that the integral converges. On making the 
substitution z = UT we obtain 

i.e. 

gs(T)= AR(1 - S ) T 5 - '  + BR(S)T-' 

where R(s)  is the Mellin transform of K, defined by 

(3.5) 

Assuming that R(s) exists for a <Re(s)<p,  then it follows that R(1-S)  exists for 
1 - p < Re(s) < 1 - o and so equation (3.5) is properly defined provided a d f d /3. 
Clearly if we choose 

A = J(R(s)); B = *J(R( 1 - s)) (3.7) 

gs (7) = *J(R(s )R (1 - S ))h (7)  

&U)= J ( R ( s ) ) f S  * J ( K ( l  - s ) ) P  (3.9) 

then 

(3.8) 

and so the functions 

are eigenfunctions satisfying equation (3.1) with corresponding eigenvalues 

A: = *J(R(s)R(l -s)). (3.10) 

Setting s = f + iw where w is real and unbounded and introducing a convenient 
multiplicative factor yields a continuum of real eigenfunctions given by 

(3.11) 
J(R(i+ io))u-f-io + J(R(4- iw))v-!+'" - Re[J(R(i+  io))^-^-'^] - 

2J(v(R($+ io)() J(vIR(4 + iw)O 

2iJ(w(R(i+io)() 4&@+ iw)O 

*:(U)= 

and 

rm[-J(R(f+  io))^-^-'^] 
(3.12) - - J ( R ( i + i w ) ) ~ - ~ - ' ~  - J (R( f - iw) )~ -~+"  

$;(U) = 

with real eigenvalues 

A: = *IR(j+iw)l. (3.13) 
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These functions are well defined provided that the transform R($+iw) exists and a 
sufficient requirement for this to be true is that p IK(X)IX-'/~ dx is finite. In view of 
the symmetry relationship 

+:(U)= *+:m (3.14) 

The eigenfunctions are not normalisable but they may be shown to be mutually 
it is sufficient to consider w 3 0. 

orthogonal. By making the substitution v = e x  it is easy to deduce that 
W 

eiox dx = 2 ~ S ( w  - ut) (3.15) - f+ iw  -f-iw' %. dv = I, 
and from this relationship it follows that 

lom +:(v)+:,(u) dv 

x [J(R(i+ iw'))v-f-iw' + J(R($+ i ~ ' ) ) v - ' + ~ ~ ' ]  dv 

- S(w - w l )  i fw#O 
if w = 0. 

- 

Similarly it may be shown that 

and 
r W  

(3.16) 

(3.17) 

(3.18) 

In terms of real quantities the eigenfunctions take the form 

1 
+:(v) = J - I c o s ( ~ / ~ ) v - ' / ~  cos[w 1n(v)]+sin(0/2)v-'/~ sin[w 1n(v)1) 

T 

(3.19) 
and 

1 
+;(U) = p n ( 0 / 2 ) v - " ~  cos[w ln(v)] - c o s ( ~ / ~ ) v - ' / ~  sin[w ln(v)]) 

T 

(3.20) 
and the eigenvalues are given by 

A: = d ( a 2 +  b z )  

where 

a = Re@(; + io)); b = Im(R(i+iw)) 
and 

(3.21) 

(3.22) 

e = tan-'(b/a). (3.23) 
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If K is a real kernel, a and b take the forms 

a = Id K ( Z ) Z - ’ / ~  cos[w ln(z)] dz 

b = 6 K(z)r -”*  sin[o ln(z)] dz. 

(3.24) 

(3.25) 

Any piecewise continuous function p ( u )  for which p Ip(u)lu-’/* du exists can be 
expanded in terms of these eigenfunctions, i.e. we may write 

p ( u )  = J a:$: (U) d o  + a;$; (U) d o  (3.26) 
0 Jo 

where 

(3.27) 

by virtue of the orthogonality of the $,(U). This may be shown quite simply as 
follows. Equation (3.26) may be written in the equivalent form 

00 

p ( u )  = lo CJJ-’/~ cos[o ln(u)] d o  + S , U - ’ / ~  sin[w ln(u)] dw (3.28) 

where 

(3.29) 
1 

C, =-[a:  cos(0/2)+a; sin(0/2)] Jtr 
and 

1 
S,  =- [a:  sin(8/2)-a;  COS(^/^)] (3.30) Jtr 

and on making the substitution u =ey this becomes 
c m  .m 

eyIZp(ey) = Io C, cos(wy) d o  + Sw sin(wy) do.  
JO 

(3.31) 

Equation (3.3 1) simply expresses the function eY”p(ey) (which must also be piecewise 
continuous) in terms of its Fourier sine and cosine transform components C, and S, 
and from the theory of Fourier transforms this is known to be valid provided rm eY”Ip(ey)I dy exists. 

It follows that equation (3.26) is also valid provided that p Ip(v)lu-’/* du exists. 

4. Inversion formulae and information capacity 

Using the eigenfunctions and eigenvalues derived in § 3 it is easy to derive the solution 
to equation (1.1). By substituting the expansion (3.26) for p ( u )  into the equation we 
obtain 
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and from the orthogonality relationships (3.16), (3.17), (3.18), it follows that 

so that p ( u )  may be written 

p ( u ) = j o  d w 4 ~ ( u ~ % d T 4 ~ ( T ) g ( T ) + J  A, 0 doQ;(uk%dr);(T)g(r). A, (4.3) 
m 1 m 

The form of this solution is clearly analogous to that given in equation (2.13) the 
discrete summation being replaced by an integral since equation (1.1) possesses an 
infinite continuum of eigenvalues. From the discussion in 0 2 it is clear that, in 
general, equation (4.3) is quite ill-conditioned. In practice, it is impossible to gain any 
information about those components of p ( u )  for which w >cumax, a number whose 
value depends on the errors during the calculation or in measuring g(7); the solution 
must therefore be written in the form 

p ( u )  = ["" d o  cl:(o)-!r I dT $//:(T)g(T)+ JWmax dw 4; ( u k  I dT 4; (T)g(T) 
1 "  m 

A ,  o 0 A, 0 
m m 

+ dw a:$:(u)+ J dw a,g;(v) (4.4) I,,, , m u  

where the coefficients a: cannot be evaluated independently and must be determined 
by means of some a priori knowledge about the result. 

The solution to equation (1.1) may be derived more directly by taking the Mellin 
transform of both sides. Since the integral has the form of a Mellin convolution this 
yields 

i(s)=R(s)p'(l-s) (4.5) 

p ' (s )=  H(1 -s)/R(l -s). (4.6) 

and so 

The transform of p ( u )  is analytic for Re(s) = f and so it follows from the formula for 
the inverse Mellin transform that 

The equivalence of equation (4.7) and equation (4.3) is readily shown by making the 
substitution s = f + iw and writing equation (4.7) in the form 

Expressed in terms of eigenfunctions this becomes 

and by applying the symmetry properties of 4 : ( v )  equation (4.3) is immediately 
recovered. 
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An alternative approach worth mentioning involves making the substitution t, = e’ 
and 7 = e-’. Equation (1.1) then has the form of a Fourier convolution and so it may 
be solved by taking the Fourier transform of both sides. The form of solution which 
results is identical to that in equation (4.7), the Mellin transforms being replaced by 
equivalent Fourier transforms. This approach was used by Gardner et a1 (1959) in an 
effort to evaluate inverse Laplace transforms using the Fourier transform algorithm. 
Their calculations, of course, were subject to the usual problems of ill-conditioning 
encountered when inverting Laplace transforms. 

When the solution to equation (1.1) is expressed in the form of equation (4.7) or 
the equivalent form used by Gardener et al, it is not clear how to separate it into 
well-conditioned components which can be evaluated and ill-conditioned ones which 
cannot. The derivation in terms of eigenfunctions, however, enables us to consider 
the information aspect and deduce immediately equation (4.4). 

In 0 2 we pointed out that the value of wmax depends on the level of noise in the 
calculation and also on the eigenvalue structure of the kernel. It is interesting to 
compare the information capacity of some familiar integral equations, in this way. 
Consider for example, the equation 

g(7) = e-av7 cos(pv7)p(v) dv (4.10) 

where a and /3 are real. In the limit a + O  this takes the form of a Fourier cosine 
transform while in the limit P + 0 it becomes a Laplace transform. The rate at which 
the eigenvalues decay to zero is easily deduced from equation (3.10). The eigenvalue 
‘spectrum’ takes the form 

I A = I ’ =  IR(i+iw)IZ 

where 

R($+iw) = e-ar cos(&) d r  

In the limit P + 0 this becomes 

R(4 + iw ) = r($ + iw ) 

and so the eigenvalue ‘spectrum’ for the Laplace transform is given by 

which decays as ( I T / C Y )  e-“ for large W .  When a = 0 we have 

R(i + iw) = p-f-iwr(i + i o )  cos($, + 
and so the eigenvalue spectrum for the Fourier transform takes the form 

/ A i  1’ =-IF($+ 1 iw)lz[ coshZ(?) + sinhZ(?)] =- IT 
2P 2P 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

which never decays to zero. 
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From the above analysis it is clear that the Fourier transform has a much greater 
information capacity than the Laplace transform and this feature becomes evident in 
practice in terms of the comparative ease with which it can be inverted. In fact the 
Fourier transform has an infinite information capacity by virtue of which its analytic 
inversion formula can be used to obtain a complete solution. This desirable property 
is not shared by the Laplace transform. Although there is also a well known formula 
for inverting these transforms it cannot be used in practice to obtain a complete result 
and the solution must be expressed in the form of equation (4.4) with an infinite 
amount of information undetermined. 

The more general limit a/P << 1 is also interesting. In this limit 

and so 

(4.17) 

which decays as 

?r 
1/2 for large w. 

2 b 2 + P  ) 
Clearly the width of the eigenvalue spectrum is proportional to P/a and so the 
information capacity of equation (4.4) can be seen to depend directly on the number 
of cosine cycles which exist within the exponential half-width. 

Any equation of type (1.1) may be studied in this way although few lend them- 
selves to such convenient analytic treatment as that presented in the above example. 
In all cases, however, such information features become apparent when the solution is 
approached by means of equation (4.4). 

5. Numerical examples 

We now illustrate the general theory discussed above by applying it together with the 
eigenfunction expressions (3.1 1) and (3.12), to the numerical solution of the equation 

This equation has the form (4.10) which was discussed in detail in 04, the particular 
form of g(7) having been chosen to correspond to the analytic solution 

p ( u )  = U e-". (5.2) 
The results of our computations are compared with this known solution but no 
knowledge of it is assumed during the calculations. These involve the use of equation 
(4.4) and demonstrate clearly the importance of the finite upper limit wmax which 
appears in the integrals. We examine the results obtained by varying w,,, under 
varying conditions of noise and information capacity, the latter being determined by 
the particular value of P. Throughout the calculations the undetermined parameters 
a, have been set arbitrarily equal to zero as in the truncation method of regularisation 
and we will see that as the noise is increased the maximum value of w for which 
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meaningful coefficients a, can be obtained decreases and a,’s of more and more 
significance are lost until this incomplete inversion becomes incapable of reconstruc- 
ting adequately the p ( ~ ) .  

In order to evaluate (4.4) numerically it is necessary to set a finite upper limit L2  
and also a positive, non-zero lower limit L1 (since $:(T)  is not defined at T = 0) on the 
eigenfunction projection integrals (4.2), but the magnitude of the error caused by 
introducing these limits may be made arbitrarily small by choosing LZ sufficiently large 
and L1 sufficiently small. In the numerical work described in this section these 
integrals were evaluated to an accuracy of using a standard computer algorithm 
and the limits 

L~ = 10-15, L~ = io5 

were chosen so that the truncation errors given by the expressions 

and 

were even smaller ( -10-~‘~) .  
It is easy to show that the discrete subset of eigenfunctions 

$LW(7) 

Aw = 2 ~ / [ l n ( L ~ ) - l n ( L ~ ) ]  (5.3) 

n = 0, 1 ,2 ,  . . . 
where 

form a complete orthogonal set on the interval [L1, L2] and may be normalised by the 
factor Awl’*. For this reason our calculations reduced to the evaluation of the finite 
discrete summations 

c ,  N +  

P N ( U ) =  +$:Au(Y)+ 1 -@,i\u(u) (5.4) 
n=O nAw n = l  A n A o  

where 
L2 

[Aw 1 g(T)$:A,(T)dT n # O  

( 5 . 5 )  

with 

Aw=0*136 and NAw=wmaX. (5.6) 
A uniform discretisation of this kind was particularly convenient for these examples 
since the value of wmax in which we are interested is simply proportional to the number 
N of terms retained in the series. In general it may be possible to evaluate the integral 
with respect to w more efficiently using other techniques such as Gaussian quadrature. 

The eigenfunction projections (5.5) were evaluated by making a substitution of the 
form T = ex (analagous to that used in § 3) in order to obtain better conditioning of the 
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integrals which were calculated numerically using a four-point Gauss quadrature 
algorithm. 

When U = 0, (L:A~(u) is singular and so it is not possible to evaluate P N ( U ) .  

5.1. Laplace transform 

We first set p = 0 in equation (5.1) and so the problem was reduced to one of inverting 
a Laplace transform. In the first calculations the eigenfunction components of g(7) 
were not subject to any source of noise apart from the small error (-lo-') which was 
incurred during the integration process. The results p N ( u )  which were obtained in this 
case are plotted in figure 3. The full curve is a plot of the analytic solution U e-' from 
which g(7) was generated. The broken curve shows the result obtained for p ~ ( u )  by 
including twenty terms in equation (5.4) and although its shape is not dissimilar to that 
of the true solution, it does deviate noticeably from it due to the loss of higher 
components. When forty terms were included in equation (5.4) the result was found 
to differ very little from the known solution and on the scale of figure 3, the plot of 
p N ( u )  could not be distinguished from the full curve. Clearly the particular p ( u )  
chosen here does not contain significant components higher than these. However, 
when sixty terms were included in equation (5.4) the result deviated considerably as 
shown in the chain curve and as the value of N was increased further the result rapidly 
became wildly oscillatory and bore no resemblance whatever to the full curve. Thus, 
when N - 60 or greater the value of  ANA^ is so small that even the minute errors 
which were tolerated in the numerical evaluation of the eigenfunction components en 
were sufficient to dominate p N ( u ) .  

The next set of computations which we carried out was identical to the first one 
except for the fact that the calculated eigenfunction components were subjected to the 
addition of Gaussian random errors with standard deviation The results 
obtained are shown in figure 4 where the full curve is again a plot of the known 

1 I I 1 I I I I 

V 

Figure 3. p N ( u )  as a function of U. p = 0 and noise -lo-': broken curve, N = 20; chain 
curve, N = 60; full curve, actual solution p ( u ) =  U e-" (and N = 40). 
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Figure 4. p N ( u )  as a function of U. B = 0 and noise 
curve, N = 30; full curve, actual solution p ( u )  = U e-". 

broken curve, N = 20; chain 

solution U e-". The result of including twenty terms in equation (5.4) is again plotted 
by means of the broken curve which is similar to that obtained in the previous case. 
When more terms were included in the summation, however, the results grew steadily 
worse. Even at N = 30 the behaviour was quite erratic as shown in the chain curve. 
There was no value of N for which p N ( u )  converged any closer to the known solution 
than at N = 20. The effect of the increased noise level in this calculation was to reduce 
the amount of information which could be extracted from equation (5.1) to the extent 
that P ( U )  could not be represented accurately in terms of it. In other words the value 
of omax required to reconstruct p ( u )  adequately (-40Ao) was greater than the 
generalised Shannon number (-20 Au) in this situation. However, if the true solution 
p ( v )  had contained no eigenfunction components beyond N = 20 this level of noise 
would not have been significant. 

5.2. Oscillatory kernel 

In the final set of calculations ,!3 was given the value 477 and the computed eigen- 
function components were again subjected to the addition of Gaussian random errors 
with standard deviation The results obtained are shown in figure 5 and, as 
before, the full curve is a plot of the known solution. The effect of including twenty 
terms in equation (5.4) is again illustrated in the broken curve which clearly deviates 
from the full curve in the same manner as before due to the incomplete basis. When 
forty terms were included in the summation, the function pN(u)  which resulted could 
not be distinguished from the full curve in our figure and even when N was increased 
to 60 this was still true. Only when N was increased even further did the results begin 
to differ considerably from the actual solution. On comparing the results of this set of 
calculations with those shown in figure 4, it is clear that the effect of increasing p from 
0 to 47r was to improve significantly the amount of information which could be 
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v 

Figure 5. p N ( u )  as a function of U. p = 4.n and noise 
curve, actual solution p ( o )  = v e-’ (and N = 40 and N = 60). 

broken curve, N = 20; full 

extracted from equation (5.1) in the same noise situation, i.e. to increase the general- 
ised Shannon number from the region of 40 Aw to approximately 60 Aw. 

Although it is never possible to obtain a complete numerical solution to this sort of 
problem it is clear that in the first and third sets of calculations it was possible to 
extract sufficient information to represent the solution quite accurately. This would 
not have been so, of course, if the actual solution contained finer detail which could 
not be resolved using the number of eigenfunction components available ‘above the 
noise’. From standard sampling theory it is easy to show that the function p N ( u )  of 
equation (5.4) cannot be resolved at the points ul and U:! unless 

v 2  < V I  elfZNAw (5.7) 

Given the number N of eigenfunction coefficients which can be determined in any 
situation, equation (5.7) expresses the degree of resolution which may be achieved. In 
the third set of calculations it would have been possible to represent a solution p ( u )  
with finer detail than that chosen, using the higher number of components which could 
be recovered in this case. 

It is important to note also, that the only grounds for dismissing the more oscil- 
latory results, which were obtained for larger values of N in the calculations above, 
would be a good estimate of the generalised Shannon number which is a function only 
of the noise level and the eigenvalue ‘spectrum’. Even with this value given, we have 
seen that it may not be possible to reconstruct the solution and it is essential to have a 
priori knowledge either of the absence of higher eigenvalue components than those 
available on information grounds or, more realistically, of a parametric form for the 
solution whereby the undetermined coefficients may be mapped onto the known ones. 
This approach raises some further interesting problems which are not dealt with here 
but which we hope to discuss in a future publication. 
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